TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic

TB62737FUG

Step Up Type DC/DC Converter for White LED

The TB62737FUG is a high efficient step-up type DC/DC converter specially designed for constant current driving of White LED

This IC can drive 2-6 white LEDs connected series using a Li-ion battery.

This IC contains N-ch MOS-FET Transistor for Coil-Switching, and LED Current (IF_{F}) is set with an external resistor.

This IC is especially for driving back light white LEDs in LCD of PDA, Cellular Phone, or Handy Terminal Equipment.

This device is Pb -free product.

Weight: 0.016 g (typ.)

Features

- Brightness control function with changing drive current:

LED current $I_{F}=25 \%$ to 100% (analog input)
For the control in range of 25% or less, refer 6-page.

- Can drive 2-6 white LEDs connected series
- Built-in over voltage detection circuit:

Protection Voltage: OVD pin =22V (TYP.)

- Variable LED current IF is set with a external resistor:

20 mA (typ.) @RsENS = 16Ω

- Output power: Available for 400 mW LED loading
- High efficiency: 87\% @maximum (using recommended external parts)
- IC package: SSOP6-P-0.95B
- Switching frequency: 1.1 MHz (typ.)

Block Diagram

Pin Assignment (top view)

Note: This IC could be destroyed in some case if amounted in 180° inverse direction.
Please be careful about IC direction in mounting.

Pin Function

Pin No.	Symbol	Function Description
1	$\overline{\text { SHDN }}$	Voltage-input terminal for IC-enable/setting LED-I I_{F}. 0 V to 0.5 V : Shutdown (PS) mode, IC operation is disabled. 1.0 V to $2.5 \mathrm{~V}: \mathrm{I}_{\mathrm{F}}=25 \%$ to 100% Over 2.5 V : $\mathrm{I}_{\mathrm{F}}=100 \%$ I_{F} adjustment with PWM input signal is also available.
2	OVD	Over voltage detection terminal. IC switching operation is disabled with detection over voltage. If the voltage returns to detection level or less, operation is enabled again.
3	$V_{\text {IN }}$	Supply voltage input terminal. (2.8 V to 5.5 V)
4	SW	Switch terminal for DC/DC converter. Nch MOSFET built-in.
5	GND	Ground terminal.
6	FB	LED IF setting resistor connecting terminal.

I/O Equivalent Pin Circuits

1. $\overline{\text { SHDN }}$ Terminal

2. OVD Terminal

3. SW Terminal

4. FB Terminal

Setting of External Capacitor

In case not using PWM signal to $\overline{\text { SHDN }}$ terminal for brightness control, recommended values are $\mathrm{C}_{1}=$ Over $2.2(\mu \mathrm{~F}), \mathrm{C}_{2}=$ Over $1.0(\mu \mathrm{~F})$

In case with PWM signal to $\overline{\text { SHDN }}$ terminal for brightness control, recommended values are $\mathrm{C}_{1}=\operatorname{Over} 4.7(\mu \mathrm{~F}), \mathrm{C}_{2}=$ Under $0.1(\mu \mathrm{~F})$.

The recommended capacitor values depend on the Brightness Control Method.
<Please refer the next page or later>
The capacitor value must be considered for gain enough accuracy of brightness with reduction of noise from Input current changing.

Setting of External Inductor Size

Please select the inductor size with referring this table corresponding to each number of LEDs.
Recommendation

LEDs	Indictor Size	Note
2	$4.7 \mu \mathrm{H}$	
3	LED current $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	
4		
5		
6	$10 \mu \mathrm{H}$	

LED Current IF Setting

The resistance between the FB pin and GND, RSENS (Ω) is the resistance for the setting the output current. Depending on the resistance value, it is possible to set the average output current lo (mA).
The average output current lo (mA) can be approximated with the following equation:

$$
\mathrm{I}_{\mathrm{F}}=(325[\mathrm{mV}] / \operatorname{RSENS}[\Omega])
$$

The current value error is $\pm 5 \%$.

Protection in LED Opened Condition

The operation with OVD terminal is available for the protection in case LED Circuit opened.
Please see the example of application circuit.
If load of LED is detached, Nch MOS switching operation is disabled with detection of boost circuit voltage.

Current Dimming Control

Recommended Brightness Control Circuits are 5 types.

1) Input analog voltage to $\overline{\text { SHDN }}$ terminal IF can be adjusted in range of 25% to 100% after set with external resistor connected RSENS terminal. Linearity error in V-A Conversion is within +/-10\%.

$\overline{\mathrm{SHDN}}$ Voltage	$\mathrm{V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}$ to 0.5 V	$\mathrm{~V} \overline{\mathrm{SHDN}}=1 \mathrm{~V}$ to 2.5 V	$\mathrm{~V} \overline{\mathrm{SHDN}}>2.5 \mathrm{~V}$	Note
I_{F} Valuable Rate	0	25 to 100	100	Unit: $\%$

2) Input PWM signal to SHDN terminal
$I_{\text {F }}$ can be adjusted with PWM signal by inputting it to $\overline{\text { SHDN }}$ terminal.
[Notice]
<<Minimum ON-time of PWM signal input>>

- Set the minimum ON-time or OFF-time $33 \mu \mathrm{~s}$ or more in inputting the PWM signal.
- Set the Duty ratio satisfying the condition above.

Ex) In case PWM Frequency is 1 kHz ,
1 kHz is 1 ms (PWM width = 100\%) and it takes $10 \mu \mathrm{~s}$ per 1%.
To set the pulse width $33 \mu \mathrm{~s}$ or more, necessary ON-or-OFF-time is calculated below. $33 \mu \mathrm{~s} \div 10 \mu \mathrm{~s}=3.3 \% \quad$ (Under the condition that $10 \mu \mathrm{~s}$ equals 1\%.)

Finally, the Duty Ratio can be set in range of 3.3% to 96.7%.

<<PWM signal frequency>>

- The recommended PWM signal frequency is from 100 Hz to 10 kHz . There is a possibility to arise the audible frequency in mounting to the board because it is within the auditory area.
<<Constant number of external condenser>>
- To reduce the fluctuation of input current and increase the accuracy of brightness, the values that $\mathrm{C}_{1}=$ $4.7(\mu \mathrm{~F})$ or more , $\mathrm{C}_{2}=0.1(\mu \mathrm{~F})$ or less are recommended.
- When the PWM signal is off, the time to drain C_{2} of charge depends on the constant number. And so, the actual value is little different from the theoretical value.
<<PWM input signal>>
- Set the amplitude of PWM signal within the range of SHDN terminal specification.
<<Rush current in inputting>>
- In case dimming by inputting the PWM signal to the SHDN terminal, this IC turns on and off repeatedly.
And the rush current, which provides the charge to C_{2}, arises in turning on. Take care in selecting the condenser.
<<Current value in Control with PWM: Ideal Equation>>

$$
I_{F}[\mathrm{~mA}]=\frac{325[\mathrm{mV}] \times \text { ON Duty }[\%]}{\operatorname{RSENS}[\Omega]}
$$

<Reference Data>
Condition: $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~L}=6.8 \mu \mathrm{H}, 4 \mathrm{LEDs}, \operatorname{RSENS}=16 \mathrm{~m} \Omega @ \mathrm{lo}=20 \mathrm{~mA}$
(1) $C_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=0.1 \mu \mathrm{~F}$

(2) $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=0.47 \mu \mathrm{~F}$
ON Duty width[\%] V.S. Error with Ideal Value
(3) $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1.0 \mu \mathrm{~F}$

(4) $\mathrm{C}_{1}=2.2 \mu \mathrm{~F}, \mathrm{C}_{2}=1.0 \mu \mathrm{~F}$

Wave Form

<Recommended application>

3) Input analog voltage to FB terminal

IF can be adjusted with Analog voltage input to FB terminal.
This method is without repeating IC ON/OFF, and no need to consider holding rash current.
[Notice]

- LED current value goes over 100% of the current set with RSENS, if the input analog voltage is between 0 V to 325 mV (typ.).
(Reference data) Analog voltage $=0$ to 2.2 V
About external parts value, please see recommended circuit.

Supply Voltage (V)	Ratio with Setting Current
No connect (OFF)	100%
0	116.0%
0.2	106.5%
0.4	95.4%
0.6	84.5%
0.8	73.6%
1	59.9%
1.2	48.4%
1.4	37.4%
1.6	26.6%
1.8	15.9%
2	5.8%
2.2	0.0%

<Recommended application>

4) Input PWM signal with filtering to FB terminal

IF can be adjusted with filtering PWM signal using RC filter indicated in recommended circuit, because the PWM signal can be regard as analog voltage after filtering.
This method is without repeating IC ON/OFF, and no need to consider holding rash current.
[Notice]

- LED current value goes over 100% of the current set with RSENS, if the input voltage after filtering is between 0 V to 325 mV (typ.).
(Reference data) Voltage during PWM Signal-ON = 2 V
About external parts value, please see recommended circuit.

Supply Voltage (V)	Ratio with Setting Current
No connect (OFF)	100%
0	116.1%
10%	105.3%
20%	95.1%
30%	84.8%
40%	74.6%
50%	64.0%
60%	53.8%
70%	43.7%
80%	34.0%
90%	24.2%
100%	13.3%

<Recommended application>

5) Input Logic signal

If can be adjusted with Logic signal input as indicated in recommended circuit.
The resistor connected the ON-State Nch MOS Drain and RSENS determines IF.

Average of setting current lo (mA) is next, approximately.
$\mathrm{I}_{\mathrm{F}}=(325[\mathrm{mV}] /$ Sum of resistor value $[\Omega])$
<Recommended application>

M1	M2	LED Current
OFF	OFF	$\frac{325[\mathrm{mV}]}{\operatorname{RSENS}[\Omega]}$
ON	OFF	$325[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega] \times R 1[\Omega]}{\operatorname{RSENS}[\Omega]+\operatorname{R1}[\Omega]}$
OFF	ON	$325[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega] \times R 1[\Omega]+\operatorname{RSENS}[\Omega] \times \operatorname{R2}[\Omega]+\mathrm{R} 1[\Omega] \times R 2[\Omega]}{}$
ON	ON	

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{IN}	-0.3 to +6.0	V
Input voltage	V $\overline{\text { SHDN }}$	-0.3 to $+\mathrm{V}_{\text {IN }}+0.3$	V
Switching terminal voltage	$V_{0}(S W)$	-0.3 to 24	V
Power dissipation	PD	0.41 (device)	W
		0.47 (on PCB) (Note)	
Thermal resistance	$\mathrm{R}_{\text {th (}}(\mathrm{j}-\mathrm{a})$	300 (device)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		260 (on PCB)	
Operation temperature range	Topr	-40 top+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 top+150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

Note: Power Dissipation must be calculated with subtraction of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from Maximum Rating with every $1^{\circ} \mathrm{C}$ if $\mathrm{T}_{\text {opr }}$ is upper $25^{\circ} \mathrm{C}$. (on PCB)

Recommended Operating Condition ($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ if without notice)

Characteristics	Symbol	Test Condition	Min	Typ.	Max

Electrical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2.8\right.$ to 5.5 V if without notice)

Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Power supply voltage	$V_{\text {IN }}$	-	2.8	-	5.5	V
Operating consumption current	IIN (On)	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{RSENS}=16 \Omega$	-	0.9	1.5	mA
Quiescent consumption current	IIN (Off)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ terminal "H" level input voltage	$\checkmark \overline{\text { SHDN }} \mathrm{H}$	-	2.7	-	VIN	V
$\overline{\text { SHDN }}$ terminal "L" level input voltage	$V \overline{\text { SHDNL }}$	-	0	-	0.5	V
Integrated MOS-Tr switching frequency	fosc	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V}$	0.77	1.1	1.43	MHz
Switching terminal protection voltage	$\mathrm{V}_{0}(\mathrm{SW})$	-	-	25	-	V
Switching terminal current	$\mathrm{I}_{\mathrm{Oz}}(\mathrm{SW})$	-	-	400	-	mA
Switching terminal leakage current	$\mathrm{I}_{\mathrm{oz}}(\mathrm{SW})$	-	-	0.5	1	$\mu \mathrm{A}$
FB terminal feedback voltage (VFB)	V_{FB}	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{RSENS}=16 \Omega \\ & \mathrm{~T}_{\text {opr }}=25^{\circ} \mathrm{C}, \mathrm{~L}=6.8 \mu \mathrm{H} \end{aligned}$	308	325	342	mV
FB terminal line regulation (VFB)	$\Delta \mathrm{V}_{\mathrm{FB}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { (typ.) } \\ & \mathrm{V}_{\mathrm{IN}}=3.0 \text { to } 5.0 \mathrm{~V} \end{aligned}$	-5	-	5	\%
OVD terminal voltage	VovD	-	19	22	23.5	V
OVD terminal leakage current	lovd	$\mathrm{V}_{\text {OVD }}=16 \mathrm{~V}$	-	0.5	1	$\mu \mathrm{A}$

1. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V} \mathrm{IN}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	82.60 to 88.46	86.29
3 LEDs	82.69 to 87.78	85.95
4 LEDs	80.73 to 86.22	83.05
5 LEDs	80.73 to 87.28	83.45
6 LEDs	79.78 to 85.55	81.15

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ.)

	Output Current (mA)	Tolerance (\%)	
	VIN $=3.6 \mathrm{~V}$	Min	Max
2 LEDs	21.13	-3.50	1.77
3 LEDs	20.60	-1.95	1.38
4 LEDs	20.87	-1.75	1.11
5 LEDs	20.06	-1.81	1.15
6 LEDs	19.90	-1.95	1.28

* Vout voltage in driving 5 or 6 LEDs must be lower than OVD detection level. (VOUT < 19 V)

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

2. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	83.10 to 88.60	86.55
3 LEDs	81.32 to 86.47	84.54
4 LEDs	79.15 to 84.63	81.30
5 LEDs	79.72 to 86.39	82.87
6 LEDs	78.91 to 85.10	80.47

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ.)

	Output Curent (mA)	Tolerance $(\%)$	
	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	Min	Max
2 LEDs	21.17	-3.32	1.73
3 LEDs	20.85	-1.95	1.38
4 LEDs	20.56	-1.79	1.15
5 LEDs	20.10	-1.82	1.22
6 LEDs	19.95	-1.94	1.26

[^0]Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

3. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	82.37 to 88.70	86.38
3 LEDs	80.19 to 86.55	84.12
4 LEDs	78.11 to 84.54	80.16
5 LEDs	74.79 to 84.94	79.94
6 LEDs	74.14 to 83.47	77.17

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ. $)$

* VOUT voltage in driving 5 or 6 LEDs must be lower than OVD detection level. (VOUT < 19 V)

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	Min	Max
2 LEDs	21.19	-3.26	1.69
3 LEDs	20.90	-1.87	2.17
4 LEDs	20.63	-1.78	1.01
5 LEDs	20.09	-1.88	1.25
6 LEDs	19.93	-1.99	1.07

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

4. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	79.85 to 86.97	84.02
3 LEDs	80.19 to 85.32	83.39
4 LEDs	78.77 to 83.60	80.69
5 LEDs	79.72 to 86.39	82.87
6 LEDs	78.91 to 85.10	80.49

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathbb{I}}=3.6 \mathrm{~V}\right.$ typ.)

	$\begin{gathered} \text { Output Current (mA) } \\ \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \end{gathered}$	Tolerance (\%)	
		Min	Max
2 LEDs	21.19	-3.08	1.67
3 LEDs	20.89	-1.86	1.33
4 LEDs	20.64	-1.68	1.11
5 LEDs	20.10	-1.82	1.22
6 LEDs	19.95	-1.94	1.26

[^1]Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

5. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	83.08 to 89.23	86.73
3 LEDs	79.02 to 86.30	83.52
4 LEDs	75.75 to 83.83	80.78

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to 5.0 V ($\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ typ.)

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	Min	Max
2 LEDs	21.06	-2.46	4.02
3 LEDs	20.57	-2.39	2.94
4 LEDs	20.22	-2.28	2.65

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

Package Dimensions

SSOP6-P-0.95B

Weight: 0.016 g (typ.)

Notes on Contents

1. Block Diagrams

Some functional blocks, circuits, or constants may be omitted or simplified in the block diagram for explanatory purposes.

2. Equivalent Circuitry

Some parts of the equivalent circuitry may have been omitted or simplified for explanatory purposes.

3. Maximum Ratings

The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must not be exceeded during operation, even for an instant.

If any of these ratings are exceeded during operation, the electrical characteristics of the device may be irreparably altered and the reliability and lifetime of the device can no longer be guaranteed.
Moreover, any exceeding of the ratings during operation may cause breakdown, damage and/or degradation in other equipment. Applications using the device should be designed so that no maximum rating will ever be exceeded under any operating conditions.
Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in this document

4. Application Examples

The application examples provided in this data sheet are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

In providing these application examples, Toshiba does not grant the use of any industrial property rights.

5. Handling of the IC

- Ensure that the product is installed correctly to prevent breakdown, damage and/or degradation in the product or equipment.
- Short circuiting between output and line to ground faults may result in damage to the IC. Please exercise precaution in designing the output line, power line and GND line so as to prevent such damage.
- Be careful to insert the IC correctly. Inserting the IC the wrong way (e.g., wrong direction) may result in damage to the IC.
- Please exercise precaution in handling external components as shorting and opening such components may cause an overcurrent, which in turn may result in power overcurrent and/or in damage to the IC.

6. Overcurrent and Thermal Protection

- Toshiba does not guarantee that these protection functions will prevent damage to the product. These functions are only intended as a temporary means of preventing output short circuiting and other abnormal conditions.
- If the guaranteed operating ranges of this product are exceeded, these protection functions may not function as intended and this product might be damaged due to output short circuiting.
- The overcurrent protection function is intended to protect this product from temporary short circuiting only. Short circuiting that last for a long time may cause excessive stress and damage to this product.

About solderability, following conditions were confirmed

- Solderability
(1) Use of $\mathrm{Sn}-37 \mathrm{~Pb}$ solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

[^0]: * VOUT voltage in driving 5 or 6 LEDs must be lower than OVD detection level. (VOUT < 19 V)

[^1]: * Vout voltage in driving 5 or 6 LEDs must be lower than OVD detection level. (VOUT < 19 V)

